Vehicular (General)
There are different designs of vehicle clutch but most are based on one or more friction discs pressed tightly together or against a flywheel using springs. The friction material varies in composition depending on many considerations such as whether the clutch is "dry" or "wet". Friction discs once contained asbestos but this has been largely eliminated. Clutches found in heavy duty applications such as trucks and competition cars use ceramic clutches that have a greatly increased friction coefficient. However, these have a "grabby" action generally considered unsuitable for passenger cars. The spring pressure is released when the clutch pedal is depressed thus either pushing or pulling the diaphragm of the pressure plate, depending on type. However, raising the engine speed too high while engaging the clutch will cause excessive clutch plate wear. Engaging the clutch abruptly when the engine is turning at high speed causes a harsh, jerky start. This kind of start is necessary and desirable in drag racing and other competitions, where speed is more important than comfort.Automobile Powertrain
In a modern car with a manual transmission the clutch is operated by the left-most pedal using a hydraulic or cable connection from the pedal to the clutch mechanism. On older cars the clutch might be operated by a mechanical linkage. Even though the clutch may physically be located very close to the pedal, such remote means of actuation are necessary to eliminate the effect of vibrations and slight engine movement, engine mountings being flexible by design. With a rigid mechanical linkage, smooth engagement would be near-impossible because engine movement inevitably occurs as the drive is "taken up." No pressure on the pedal means that the clutch plates are engaged (driving), while pressing the pedal disengages the clutch plates, allowing the driver to shift gears or coast.Motorcycles
Motorcycles typically employ a wet clutch with the clutch riding in the same oil as the transmission. These clutches are usually made up of a stack of alternating plain steel and friction plates. Some of the plates have lugs on their inner diameters locking them to the engine crankshaft, while the other plates have lugs on their outer diameters that lock them to a basket which turns the transmission input shaft. The plates are forced together by a set of coil springs or a diaphragm spring plate when the clutch is engaged.- On most motorcycles the clutch is operated by the clutch lever located on the left handlebar. No pressure on the lever means that the clutch plates are engaged (driving), while pulling the lever back towards the rider will disengage the clutch plates through cable or hydraulic actuation, allowing the rider to shift gears or coast.
- Racing motorcycles often use slipper clutches to eliminate the effects of engine braking which, being applied only to the rear wheel, can lead to instability.
Automobile Non-powertrain
There are other clutches found in a car. For example, a belt-driven engine cooling fan may have a clutch that is heat-activated. The driving and driven members are separated by a silicone-based fluid and a valve controlled by a bimetallic spring. When the temperature is low, the spring winds and closes the valve, which allows the fan to spin at about 20% to 30% of the shaft speed. As the temperature of the spring rises, it unwinds and opens the valve, allowing fluid past the valve which allows the fan to spin at about 60% to 90% of shaft speed.Other clutches such as for an air conditioning compressor electronically engaged clutches using magnetic force to couple the driving member to the driven member.
Other General Clutches and Example Applications
- Dog clutches: Utilization in automobile manual transmissions mentioned above. Positive engagement, non-slip. Typically used where slipping is not acceptable. Partial engagement under any significant load tends to be destructive.
- Hydraulic clutch: The driving and driven members are not in physical contact; coupling is hydrodynamic.
- Electromagnetic clutch: Typically a clutch that is engaged by an electromagnet that is an integral part of the clutch assembly.
- However, magnetic particle clutches have magnetically influenced particles contained in a chamber between driving and driven members which upon application of direct current causes the particles to clump together and adhere to the operating surfaces. Engagement and slippage are notably smooth.
- Overrunning clutch or freewheel: If some external force makes the driven member rotate faster than the driver, the clutch effectively disengages.
- Examples include:
- This was essential for the operation of Borg-Warner Overdrive transmissions in cars;
- Typical bicycles have these so that the rider can stop pedaling and coast;
- Another application includes an oscillating member where this clutch can then convert the oscillations into intermittent linear or rotational motion of the complimentary member;
- Still others use ratchets with the pawl mounted on a moving member;
- The winding knob of a camera employs a (silent) wrap-spring type as a clutch in winding and as a brake in preventing it from being turned backwards.
- Wrap-spring clutches: These have a helical spring wound with square-cross-section wire. In simple form the spring is fastened at one end to the driven member; its other end is unattached. The spring fits closely around a cylindrical driving member. If the driving member rotates in the direction that would unwind the spring the spring expands minutely and slips although with some drag. Rotating the driving member the other way makes the spring wrap itself tightly around the driving surface and the clutch locks up.
Specialty Clutches/Applications
- Single-revolution clutch: When inactive it is disengaged and the driven member is stationary. When "tripped", it locks up solidly (typically in milliseconds or tens of ms) and rotates the driven member just one full turn. If the trip mechanism is operated when the clutch would otherwise disengage the clutch remains engaged. Variants include half-revolution (and other fractional-revolution) types. These were an essential part of printing telegraphs such as the Teletype page printers, as well as electric typewriters, notably the IBM Selectric. They were also found in motor-driven mechanical calculators; the Marchant had several of them. They are also used in farm machinery and industry. Typically, these were a variety of dog clutch.
- Single-revolution clutches in teleprinters were of this type. Basically the spring was kept expanded (details below) and mostly out of contact with the driving sleeve, but nevertheless close to it. One end of the spring was attached to a sleeve surrounding the spring. The other end of the spring was attached to the driven member inside which the drive shaft could rotate freely. The sleeve had a projecting tooth, like a ratchet tooth. A spring-loaded pawl pressed against the sleeve and kept it from rotating. The wrap spring's torque kept the sleeve's tooth pressing against the pawl.
- To engage the clutch, an electromagnet attracted the pawl away from the sleeve. The wrap spring's torque rotated the sleeve which permitted the spring to contract and wrap tightly around the driving sleeve. Load torque tightened the wrap so it did not slip once engaged. If the pawl were held away from the sleeve the clutch would continue to drive the load without slipping.
- When the clutch was to disengage power was disconnected from the electromagnet and the pawl moved close to the sleeve. When the sleeve's tooth contacted the pawl the sleeve and the load's inertia unwrapped the spring to disengage the clutch.
- Considering that the drive motors in some of these (such as teleprinters for news wire services) ran 24 hours a day for years the spring could not be allowed to stay in close contact with the driving cylinder; wear would be excessive. The other end of the spring was fastened to a thick disc attached to the driven member. When the clutch locked up the driven mechanism coasted and its inertia rotated the disc until a tooth on it engaged a pawl that kept it from reversing. Together with the restraint at the other end of the spring created by the trip pawl and sleeve tooth, this kept the spring expanded to minimize contact with the driving cylinder.
- These clutches were lubricated with conventional oil but the wrap was so effective that the lubricant did not defeat the grip.
- These clutches had long operating lives cycling for tens, maybe hundreds of millions of cycles without need of maintenance other than occasional lubrication with recommended oil.
- "Cascaded-Pawl" single-revolution clutches: These superseded wrap-spring single-revolution clutches in page printers (such as teleprinters) including the Model 28 Teletype (and its successors using the same design principles). As well, the IBM Selectric typewriter had several of them.
- These were typically disc-shaped assemblies mounted on the drive shaft. Inside the hollow disc-shaped housing were two or three freely-floating pawls arranged so that when the clutch was tripped, the load torque on the first pawl to engage created force to keep the second pawl engaged, which in turn kept the third one engaged. The clutch did not slip once locked up. This sequence happened quite fast, on the order of milliseconds.
- The first pawl had a projection that engaged a trip lever. If the lever engaged the pawl the clutch was disengaged. When the trip lever moved out of the way the first pawl engaged, creating the cascaded lockup just described. As the clutch rotated it would stay locked up if the trip lever were out of the way, but if the trip lever engaged the clutch would quickly unlock.
- "Kickback" clutch-brakes:
- These mechanisms were found in some types of synchronous-motor-driven electric clocks. Many different types of synchronous clock motors were used, including the pre-World War II Hammond manual-start clocks. Some types of self-starting synchronous motors always started when power was applied, but in detail, their behavior was chaotic and they were equally likely to start rotating in the wrong direction.
- Coupled to the rotor by one (or possibly two) stages of reduction gearing was a wrap-spring clutch-brake. The spring did not rotate. One end was fixed; the other was free. It rode freely but closely on the rotating member, part of the clock's gear train. The clutch-brake locked up when rotated backwards, but also had some spring action. The inertia of the rotor going backwards engaged the clutch and "wound" the spring. As it "unwound", it re-started the motor in the correct direction. Some designs had no explicit spring as such; it was simply a compliant mechanism. The mechanism was lubricated; wear did not seem to be a problem.